Improving Retention Rates
Using Institutional Data

Cassandra Barragan & Reuben Ternes
Office of Institutional Research and Assessment (OIRA)
Oakland University
March 2013
Presentation Outline

• Introduction to OIRA
• Section I: Sources of data
 • Surveys
 • University
• Section II: Policy Analysis
• Section III: Predictive Modeling
Session Goals

• Why are we giving this presentation?
• Answer:
 • Many institutions have a vibrant and robust institutional research office that do all kinds of really neat research about students and student retention.
 • Our goal is to familiarize you with the types of resources that you may already have at your campus
 • Partnering with your IR office can be a valuable way to boost your efforts to improve student success and retention!
Introduction to OIRA

• About OIRA
 • The Office of Institutional Research and Assessment (OIRA) supports the planning, decision-making and self-assessment activities of the university community by providing and coordinating information about the progress of OU’s efforts to continuously improve itself.

• Most institutions have an IR office
 • Other Names for IR offices: Budget & Planning, Institutional Effectiveness, Institutional Assessment, etc.
 • We fill out external surveys, conduct original research, organize internal surveys, report official statistics, and are otherwise responsible for producing a host of different institutional data for the consumption of the university.
What Data is on our Website?

- Enrollment Data
- Degrees Awarded
- Information about the Assessment of Student Learning
- National Student Survey Results
- Research on OU Students
- Comparative Departmental Information
- Presentations
- Historical trend data
- Faculty numbers
- And much more....
SECTION I: SOURCES OF DATA
Surveys

Internal Surveys – Committees, etc.
IRB approved protocol through Indiana University – Bloomington

Results: NSSE Results: http://nsse.iub.edu/html/reports.cfm

• Predictive Validity for retention
 • Level of Academic Challenge (LAC) – significant for # credit hours earned
 • Student-Faculty Interaction (SFI) - # credit hours & persistence
 • Supportive Campus Environment (SCE)
 • Deep Approaches to Learning (DAL)

• Reliability
 • Measuring of concepts & constructs – internal consistency
 • Stability over time & repeat administration
 • Generalizable
The area of Academic Challenge includes four areas—Higher-Order Learning, Reflective and Integrative Learning, Quantitative Reasoning, and Learning Strategies.

Higher-Order Learning—How much courses emphasize advanced thinking skills such as applying theories to practical problems or synthesizing information into new interpretations

- Higher-Order Learning \((\alpha_{2004} = .82, \alpha_{2005} = .82)\)
 - HL1 Analyzed the basic elements of an idea, experience, or theory, such as examining a
 - particular case or situation in depth and considering its components
 - HL2 Synthesized and organized ideas, information, or experiences into new, more complex
 - interpretations and relationships
 - HL3 Made judgments about the value of information, arguments, or methods, such as
 - examining how others gathered and interpreted data and assessing the soundness of
 - their conclusions
 - HL4 Applied theories or concepts to practical problems or in new situations
• Established behaviors in high school;
• Academic preparedness;
• Admissions decisions;
• Expectations of college;
• Interactions with peers and faculty;
• Student values and goals and
• Student demographic characteristics; and
• Concerns about financing college.

• Psychometrics & Constructs:
 http://www.heri.ucla.edu/PDFs/constructs/technicalreport.pdf
• http://www.heri.ucla.edu/constructfaq.php
University Departments

• Student Affairs
 • Student group involvement
 • Learning community & housing

• Registrar’s Office (Academic Affairs)
 • Class information
 • Credit hours
 • College and Major
 • Demographics
 • Grades
 • Much of it pulled from Banner (OU’s ERP system)

• Financial Aid
 • Scholarships
 • Financial aid offers
Combining Data

- Study habits
- Personal beliefs
- Plans for the future
- Engagement in the educational process
- Sense of satisfaction
- Sense of campus community
- Social environment
- Faculty/staff involvement
- Known predictors of retention
- Examine policies
- Longitudinal trends
- Putting a face to the numbers... what does your student body look like?

Data is at aggregate & student level
Finding the data that fits your needs

Researchers
• What populations are on your campus?

Educators
• Can learn more about your students to tailor their education experience to be as relevant as possible

Administrators
• Tell me about our students. What are they telling us & what can we learn from them?
 • But it should be granular enough to have meaning to individuals!
 • Data needs to be actionable.
 • (The retention rate for biology students means more to the biology department than the retention rates for all students)
SECTION II: POLICY ANALYSIS
Policy Analysis

• How do you know you are meeting goals and benchmarks?
• How do you know that university policies aimed at improving the student experience are working?
• Do they impact retention?
• What hurts retention efforts?
• Where is the biggest “bang for your buck”?
Examples

1. Advising Policies
 - Data from internal university records
 - ACT scores
 - Enrollment/retention information
 - Number of credits

2. Financial Aid & Retention
 - Data from internal university records
 - ACT scores
 - Enrollment/retention information
 - Number of credits
Example 1: Advising Policies

• Should we recommend that students take smaller class loads if they have lower ACT scores?
 • Rationale: We don’t want to ‘overload’ students that might not be academically underprepared.

• What does the data say?
 • Retention rates do drop as ACT scores decline.
 • But the decline is small.
 • The data also show that the more credits a student takes, the more likely they are to be retained.
 • The data isn’t causative, its correlational.
 • However, there just isn’t any data to support the ‘overload’ theory.
Retention Rates by ACT Score and 1st Term Credits
Augmenting University Data

You can get a good picture about retention through university data, but other sources may help to understand the “why”.

- Advising policy findings: Students with more credits and higher ACT scores have higher retention rates but those with higher ACT scores and lower credits have a lower retention rate.

- Question: Why is the retention rate low even for those with high ACT scores?
- Is there something in the demographic profile?
- Personality profile?
- Reasons to attend?
Example 2: Financial Aid Policy

- In order to qualify for our large institutional grants you must have an ACT score of a 21 or higher.
 - Must demonstrate need
 - The grant size is usually substantial (several thousand dollars).

- What is the impact of our need-based aid on student retention?
- Can we get at a causative answer instead of just correlational?
Getting to causality...

- We can get at a causative answer by using a regression discontinuity framework.
 - Basically, we graph things and look at the relationship right near the area where things are similar in criteria, but have vastly different in experience.
 - For us, we will look at students just below the cut-off score (ACT 21).
 - These students are similar to those just above them. But have vastly different experiences.
Retention Rates by ACT Score and Need Status
The Dashed Lines

• The dashed lines represent students that have not demonstrated financial need.
• They are separated into two groups, those with ACT scores 21 and above.
• And those with scores below a 21.
• Notice that there is NO gap, or discontinuity between the two groups.
 • The two dashed lines could be represented by the same color and you would never be able to tell where the discontinuity was.
Retention Rates by ACT Score and Need Status
The Solid Lines

• The Red line (on the left) represents students with ACT scores of less than a 21.
 • These students did not qualify for a large portion of OU’s need-based aid.

• The Black solid line (on the right) represents students with ACT scores of a 21 or more.
 • These students potentially qualify for additional need-based aid.
 • Notice the HUGE gap between the red and black lines.
 • This gap is causative evidence that need based aid had a positive impact on the retention of students near the cut-off.
SECTION III: PREDICTIVE MODELING
Risk Factors & Retention

- One of the easiest ways to model retention is to categorize students into ‘risk factors’
 - First Generation
 - Minority Status
 - Low Incoming Preparation (ACT/HS GPA)
 - Pell Eligible
 - Etc.
- Then count the number of risk factors for each student.
- Use historical data to forecast new years.
- Generally, the model is very good at the aggregate level.
 - But it’s still pretty crude.
Regression

• Alternatively, IR researchers can use regression
 • Improved flexibility
 • Can include as many or as few variables as you’d like
 • Can build interactions
 • Increased sophistication (not all variables are equally important)
 • In theory, provides a more reliable retention probability for each student.
 • In practice, sometimes it does, sometimes it doesn’t.
 • Regression also has some inherent weaknesses such as:
 • over-fitting of data
 • categorical variable issues
Machine Learning Algorithms

• A host of relatively new predictive tools are just becoming popular.
• Including various machine learning algorithms (MLAs)
• These algorithms have several advantages over regression
 • Have procedures to estimate missing data well
 • Can reduce the amount of over-fitting
 • Some MLAs are really easy to use
 • Can handle hundreds of different variables
 • Categorical (i.e. non-numerical) data is OK
 • Many do not make any assumptions at all non-parametric
 • Overall good performance relative to most regression methods
An Example MLA – Random Forest

• Q: What is Random Forest?
 • A: A tool that makes really good predictions

• Q: How does it work?
 • A: It builds lots of (decision) trees
 • Randomly
 • (That’s why it’s called Random Forest)
An Example Decision Tree

- Gender
 - Male
 - ACT Score
 - High
 - Distance
 - Far: Enroll
 - Near: Do Not Enroll
 - Low
 - Distance
 - Far: Do Not Enroll
 - Near: Enroll
 - Female
 - ACT Score
 - High
 - Distance
 - Far: Do Not Enroll
 - Near: Enroll
 - Low
 - Distance
 - Far: Do Not Enroll
 - Near: Enroll
Advantages & Disadvantages

• Advantages
 • Deals with missing data well
 • Robust to over-fitting
 • Relatively easy to use
 • Can handle hundreds of different variables
 • Categorical (i.e. non-numerical) data is OK
 • Makes no assumptions (non-parametric)
 • Overall good performance

• Disadvantages
 • Probability values are the only statistics generated
 • List of variables in order of importance, but without statistics to draw your own conclusions

For more information about random forest methods:
http://www.miair.org/web_documents/using_random_forest_101.pptx
Improving Retention Rates
Using Institutional Data

A. Introduction to OIRA

B. Section I: Sources of data
 • Surveys
 • University

C. Section II: Policy Analysis

D. Section III: Predictive Modeling

For a copy of this presentation:
http://www.oakland.edu/?id=14323&sid=250