Principal Investigator Ernest Krug School of Medicine	Awarding Agency Arnold P. Gold Foundation	Title and Project Abstract An Evening of Humanism and Ethics. The 2013 Inaugural evening of Humanism and Ethics will provide an opportunity for OUWB students to hear distinguished doctors speak and engage with physicians, ethicists, and classmates in small group discussions examining case-based ethical issues.	Award Amount		Total Award All Years	
			\$	5,000	\$	5,000
Venice Sule Department of Educational Leadership	American Educational Research Association	My Brother My Sister College Access and Retention through Mentoring. My Brother My Sister (MBMS) is a community-based initiative designed to facilitate college access and retention among youth. MBMS provides culturally sensitive leadership training and peer mentoring. This service grant is designed to assist MBMS with program assessment.	\$	4,434	\$	4,434
Bradley Roth Department of Physics	Vanderbilt University and Medical Center	Optimal Design of Challenge-Response Experiments in Cardiac Electrophysiology. The objective of this project is to use new statistical methods to investigate challenge- response behavior in experiments. The methods will be tested using simulations and experiments in cardiac electrophysiology.	\$	76,380	\$	397,472
Brian Sangeorzan Department of Mechanical Engineering	Denso Foundation	Powertrain Testing and Analytical Tools for Powertrain Research. This funding will ensure that Oakland University mechanical engineering students engaged in research, and those participating in the international FSAE competition program, will train on equipment, which mirrors real-world environments that students will encounter as they pursue their careers.	\$	30,000	\$	30,000
Xiangqun Zeng Department of Chemistry	Michigan State University	Autonomous Electrochemical Gas Sensor Detection Microsystem for Mine Safety. The objective of this project is to develop new, miniaturized technology for sensing multiple gases that is capable of strategic dispersion throughout an underground coal mine.	\$	160,107	\$	643,990

Principal Investigator	Awarding Agency Henry Ford Health System	Title and Project AbstractGraduate Student Support for Medical Physics Research at Henry Ford Hospital.The objective of this funding is to support Biomedical Sciences. This support allows many of our best and brightest graduate students to work in the world-class laboratory of Distinguished Professor Michael Chopp and his colleagues, many of whom are adjunct faculty in our Department of Physics.	Award Amount		Total Award All Years	
Bradley Roth Department of Physics			\$	7,411	\$	188,508
Jie Yang Department of Computer Science and Engineering	National Science Foundation	Distributed Robust Spectrum Sensing and Sharing in Cognitive Radio Network. This project will lead to new insights into exploiting control theory to perform distributed spectrum sensing and new approaches for detecting and localizing unauthorized users to enhance spectrum efficiency in cognitive radio networks.	\$	150,149	\$	150,149
Andrei Slavin Department of Physics	National Science Foundation	Collaborative Research: Microwave Auto- Oscillators Driven by Pure Spin Currents. The goal is to develop a new class of microwave devices-magnetic auto-oscillators driven by pure spin currents, or spin-current auto-oscillators and to understand the nature of dynamical modes excited by spin currents in magnetic nanostructures.	\$	129,999	\$	129,999
Amy Butler OU INC	Grand Valley State University	Business Accelerator Fund-Client Engagement. The program objectives for this project are to make accelerator services available statewide, make services available to high priority companies in regions, share accelerator best practices statewide, build lasting collaborations, and create jobs catalyze multiplier effect.	\$	113,300	\$	300,000
Mary Dereski School of Medicine	SIR Foundation	Survival after Radioembolization for Metastatic Colorectal Cancer. This project will investigate the costs and outcomes associated with Y90 Radioembolization for the liver.	\$	4,000	\$	4,000

Principal Investigator	Awarding Agency William Beaumont Hospital	Title and Project Abstract Urinary Continence Index for Prediction of Urinary Incontinence in Older Women. The purpose of this research in collaboration with Beaumont Health System is to develop a Urinary Continence Index using a novel application of data mining strategies. The additional funding supports mentee involvement in the ongoing research project.	Award Amount		Total Award All Years	
Mohammad Siadat Department of Computer Science and Engineering			\$	20,254	\$	41,687
Lorenzo Smith Department of Mechanical Engineering	Battelle Pacific Northwest Laboratory	Aluminum Formability Extension through Superior Blank Processing. The purpose of this work is to use a combined experimental and numerical approach to develop processing methods for preparation of stamping blanks that achieve extended ductility compared to conventional blanks.	\$	42,000	\$	251,349
Dan Aloi Department of Electrical and System Engineering	University of Michigan	Reliable Peripheral Nerve Interfaces. The goal of this project is to develop and demonstrate a reliable peripheral nerve interface to control a prosthesis.	\$	6,006	\$	148,624
Jennifer Eastwood School of Medicine	Arnold P. Gold Foundation	Epistemological Beliefs and Medical Humanism Education: A Systematic Review. Considering that epistemological views are highly relevant to aspects of medical humanism, we will conduct a systematic review of research on epistemological beliefs in medical education.	\$	2,500	\$	5,000
Zissimos Mourelatos Department of Mechanical Engineering	University of Michigan (prime awardee of U.S. Army TACOM)	<i>Efficient Reliability-Based Design</i> <i>Optimization and Robust Design Methods.</i> The goal of this project is to develop a novel integrated approach for a resource-efficient design validation co-process.	\$	154,338	\$	946,755
Andrei Slavin Department of Physics	University of Michigan (prime awardee of U.S. Army TACOM)	Fast Frequency Detector Based on a New Functional Metamaterial: Randomized Array of Spin-Torque. Our objective is to detect and analyze frequencies of microwave transmissions, which is a vital task in survivability applications.	\$	47,619	\$	47,619

Principal Investigator	Awarding Agency	Title and Project Abstract	Award Amount		Total Award All Years		
Gopalan Srinivasan Department of Physics	National Science Foundation	Acquisition of Scanning Microwave Microscope for Multidisciplinary Research on Materials and Device. Funds will be used for the acquisition of a scanning microwave microscope (SMM). This instrument will be shared by the Physics, Chemistry, and Engineering faculties and will enhance our capabilities with ongoing externally funded programs.	\$	114,919	\$	114,919	
Sayed Nassar Department of Mechanical Engineering	U.S. Army TARDEC / TACOM	Transparent Armor Delamination Mitigation. The objective of this project is to perform root cause analysis of Transparent Armor panel delamination using FEA simulation and testing.	\$	796,736	\$	2,427,770	
		Total	\$	1,865,152	\$	5,837,276	