Principal Investigator	Awarding Agency	Title and Project Abstract	Award mount
Gopalan Srinivasan Department of Physics	United States Army	Self Assembled Multiferroic Nanostructures and Studies on Magnetoelectric Interactions. The goal of this project is to extend current research to novel self-assembled ferromagnetic- ferroelectric nanostructures and studies on ME interactions and negative-index characteristics.	\$ 104,000
Lorenzo Smith Department of Mechanical Engineering	Battelle Pacific Northwest Laboratory (Prime awardee of U.S. Department of Energy)	Electrohydraulic Bonding between Foil Cladding and Dissimilar Sheet Materials. The purpose of this work is to investigate the ability to use electrohydraulic pressure pulses to substitute for the detonation of explosives, while creating high-quality bonds between foil cladding and dissimilar sheet materials.	\$ 50,000
Lorenzo Smith Department of Mechanical Engineering	Battelle Pacific Northwest Laboratory (Prime awardee of U.S. Department of Energy)	Aluminum Formability Extension through Superior Blank Processing. The purpose of this work is to use a combined experimental and numerical approach to develop processing methods for preparation of stamping blanks that achieve extended ductility compared to conventional blanks.	\$ 48,943
Mohammad Das Department of Electrical and Systems Engineering	Nexthermal Corporation	A Predictive Feedback System for Heater Health Monitoring. The goal of this project is to develop a predictive feedback system that would monitor the health of electric heaters and predict an end of life condition in advance.	\$ 8,182
Mohammad Reza Siadat Department of Computer Science and Engineering	Beaumont Health System	Urinary Continence Index for Prediction of Urinary Incontinence in Older Women. The purpose of this research in collaboration with Beaumont Health System is to develop a Urinary Continence Index using a novel application of data mining strategies. The additional funding supports mentee involvement in the on-going research project.	\$ 21,433
Dorothy Nelson Office of Research Administration	Michigan Economic Development Corporation	Tech Transfer Talent Network Fellowship. Funding is proposed to support a technology transfer fellow in the Office of Research Administration. The fellow is a patent attorney and faculty in the School of Engineering and Computer Science.	\$ 15,800

Principal Investigator	Awarding Agency	Title and Project Abstract	ward mount
Dorothy Nelson Office of Research Administration	Michigan Economic Development Corporation	Tech Transfer Talent Network MiR. Funding for this project will support review of existing technology to determine next steps for Oakland University inventors and intellectual property portfolio.	\$ 25,000
Michael MacDonald Department of Educational Leadership	Substance Abuse and Mental Health Services Administration (SAMHSA)	Grizzlies Response: Awareness and Suicide Prevention at Oakland University. The objective of this project is to increase awareness of suicide prevention campus wide.	\$ 101,924
Ching She Wu Department of Computer Science and Engineering	Illinois State University (Prime awardee of the National Science Foundation)	Service Oriented Paradigm Across Introductory Information Technology Cirricula. This funding will be used to conduct an NSF funded study on better ways to teach introductory programming courses, providing Indiana State University and Oakland University with valuable insight into teaching practices.	\$ 5,000
Ka C Cheok Department of Electrical and Computer Engineering	Battelle Memorial Institute (Prime awardee of U.S. Army)	Reliable Ultra Wide Band (UWB) Tracking System with Multi-Sensor Fusion. The objective is to develop a robust UWB tracking system, enhanced by the fusion of various navigation, proximity and motion sensors.	\$ 9,650
Julie Ricks-Doneen Department of Human Development and Child Study	U.S. Department of Education	Child Care Access Means Parents in School. This project will provide Pell-eligible undergraduate student-parents financial assistance with their Lowry enrolled child's tuition.	\$ 54,590
Zissimos Mourelatos Department of Mechanical Engineering	University of Michigan (Prime awardee of U.S. Army)	Simulation-Based Validation and Certification of Vehicle Tests and Designs. The goal of this project is to complement current research activity at the ARC to accelerate the progress of basic research in simulation-based validation and certification of vehicle tests and designs.	\$ 66,503

Principal	Awarding	Title and	Award
Investigator	Agency	Project Abstract	Amount

Total

511,025

\$